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The Approximation Problem



The Approximation Problem

The goal in the approximation problem is simple, just want 

a function TA(s) or HA(z) that meets the filter requirements.
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ω

( )LPT j

Will focus primarily on approximations of the standard 

normalized lowpass function

• Frequency scaling will be used to obtain other LP band edges

• Frequency transformations will be used to obtain HP, BP, and BR

 responses
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The Approximation Problem
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( )AT s =?

TA(s) is a rational fraction in s

Rational fractions in s have no discontinuities in 

either magnitude or phase response

No natural metrics for TA(s) that relate to 

magnitude and phase characteristics  (difficult to 

meaningfully compare TA1(s) and TA2(s))
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The Approximation Problem
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( )LPT j

• Magnitude Squared Approximating Functions

• Inverse Transform

• Collocation

• Least Squares (Cost Function Minimizations)

• Pade Approximations

• Other Analytical Optimization

• Numerical Optimization

• Canonical Approximations
→Butterworth (BW)

→Chebyschev (CC)

→Elliptic

→Thompson

Approach we will follow:

( )2

AH ω

( ) ( )2

A AH ω T s→
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Magnitude Squared Approximating Functions
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Thus             is an even function of ω ( )T jω  

It follows that              is a rational fraction in ω2 with real coefficients ( )
2

T jω  
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T jω  Since            is a real variable, natural metrics exist for comparing 

approximating functions to  ( )
2

T jω  
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Magnitude Squared Approximating Functions
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If a desired magnitude response is given, it is common to find a rational 

fraction in ω2 with real coefficients, denoted as HA(ω2), that approximates 

the desired magnitude squared response and then obtain a function TA(s) 

that satisfies the relationship ( ) ( )
2 2

A AT jω = H ω

HA(ω2) is real so natural metrics exist for obtaining HA(ω2) 
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Obtaining TA(s) from HA(ω2) is termed the inverse mapping problem 

But how is TA(s) obtained from HA(ω2)  ?   

 

Review from Last Time



Im

Re

z

Im

Re

z

-z z*

-z*

Im

Re
z-z

Im

Re
z

Im

Re

z

z*

Im

Re

z

Observation:   If z is a zero (pole) of HA(ω2), then –z, z*, and –z* are also 

zeros (poles) of HA(ω2) 

Thus, roots come as quadruples if off of the axis and as pairs if they lay on the axis
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Inverse MappingTheorem:  If HA(ω2) is a rational fraction with real 

coefficients with no poles or zeros of odd multiplicity on the real axis, then 

there exists a real number H0 such that  the function

is a minimum phase rational fraction with real coefficents that satisfies the 

relationship

where {z1, z2, …zm} are the upper half-plane zeros of HA(ω2) and exactly 

half of the real axis zeros, 

and where where {p1, p2, …pn} are the upper half-plane poles of HA(ω2) 

and exactly half of the real axis poles.
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Roots that Appear in TAM(s)

(but multiplied by j)
Roots of HA(ω2)

Example:
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      Theorem:  If HA(ω2) is a rational fraction  of order 2m/2n  with real 

      coefficients with one or more zeros on the real axis  that are of odd 

      multiplicity, then there is no inverse mapping to a rational fraction T(s) with 

      real coefficients that satisfies the relationship

Theorem:  If HA(ω2) is a rational fraction  of order 2m/2n  with real 

coefficients with one or more poles on the real axis  that are of odd 

multiplicity, then there is no inverse mapping to a rational fraction T(s) with 

real coefficients that satisfies the relationship ( ) ( )2

AT jω H ω=

Im

Re

Example where inverse mapping does not exist:

( ) ( )2

AT jω H ω=

Im

Re
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Example:

Inverse does not exist because zeros 

are of odd multiplicity on the real axis

If inverse exists
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• Coefficients of TAM(s) are real

• If x is a root of HA(ω2), then jx is a root of TAM(s)

 

• Multiplying a root by j is equivalent to rotating it by 90o cc in the complex plane

• Roots of TAM(s) are obtained from roots of HA(ω2) by multiplying by j

• Roots of TAM(s) are upper half-plane roots and exactly half of real axis roots all 

rotated cc by 90o

• If a root of HA(ω2) has odd multiplicity on the real axis, the inverse mapping 

does not exist

• Other (often many) inverse mappings exist but are not minimum phase 
(These can be obtained by reflecting any subset of the zeros or poles around the imaginary axis into the RHP)

Observations:

If inverse exists
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If inverse exists
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phase
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o90
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All pass functions (and factors)

• Must not allow cancellations to take place in HA(ω2) to obtain all-pass TA(s)

• All-pass TA(s) is not minimum phase

All pass TA(s)

Pole-zero cancellation

TA(s)=1



Magnitude Squared Approximating Functions

How is a magnitude-squared approximating function 

obtained?

• Analytical formulations

•  Computer-aided optimization
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The Approximation Problem

1

1

ω

( )LPT j

• Magnitude Squared Approximating Functions

• Inverse Transform

• Collocation

• Least Squares (Cost Function Minimizations)

• Pade Approximations

• Other Analytical Optimization

• Numerical Optimization

• Canonical Approximations
→Butterworth (BW)

→Chebyschev (CC)

→Elliptic

→Bessel

→Thompson

Approach we will follow:

( )2

AH ω

( ) ( )2

A AH ω T s→



Collocation

Collocation is the fitting of a function to a set of points (or 

measurements) so that the function agrees with the 

sample at each point in the set.

The function that is of interest for using collocation when addressing the 

approximation problem is  ( )2ω
A

H

x

f(x)

x

f(x)

Collocating 

Function
Often consider critically constrained functions



Collocation
Example:   Collocation points {(x1,y1), (x2,y2),(x3,y3)}

Polynomial collocating function (critically constrained)

( ) 2

0 1 2f x  = a + a x + a x

Unknowns:  {a1,a2,a3}

Set of equations: 2

1 0 1 1 2 1

2

2 0 1 2 2 2

2

3 0 1 3 2 3

y  = a + a x + a x

y = a + a x + a x

y = a + a x + a x

These equations are linear in the unknowns {a1,a2,a3}
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y x x a

y ax x

    
    

= •    
        

Y = X• A -1
A = X •Y

Can be expressed in matrix form
Solution:

Closed form solution exists when collocating to a polynomial



Collocation

Is it possible to get a closed-form solution when collocating to a rational fraction?

( ) ( ) ( ) 1 1 2 2, , , ... ,k kx y x y x y ( )
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where k=m+n+1

The rational fraction is nonlinear in x !

( )2 2

1 1 1 2 1 1 0 1 1 2 1 11 ... ...n n

n my b x b x b x a a x a x a x+ + + + = + + + +

2 2

1 0 1 1 2 1 1 1 1 1 2 1 1 1 1... ...n n

m ny a a x a x a x b x y b x y b x y= + + + + − − − −

This can be expressed as

Note this equation is linear in the unknowns {a0,a1,…am,b1,b2,…bn}



Collocation

Is it possible to get a closed-form solution when collocating to a rational fraction?
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Collocation

Is it possible to get a closed-form solution when collocating to a rational fraction?
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Y = Z •C

-1
C = Z • Y

Closed form solution when collocating to a rational fraction !



Collocation
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Applying to ( )2AH 



Collocation
Example: 
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poles at 5s j 
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Collocation
Example: 

poles at

5s j 
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Collocation
Example: 

poles at 5s j 
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The approximation is reasonable but not too good



Collocation
Example: 
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• The problem was critically constrained from a function viewpoint (two 

variables and two equations) 

• Highly under-constrained as an approximation technique since the 

collocation points are also variables



Collocation
Example:  same              but with different collocation points
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Collocation

poles at 5s j 
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Choice of collocation points plays a big role on the approximation

Example:  same              but with different collocation points( )2
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Collocation
Example:  same              but with different collocation points and different 

approximating function
( )2

AH ω

x

x

ω

1 2

2

( )2

AH ω

x

( )
2

2 0 1
A 2

1

a a ω
H ω  = 

1+b ω

+

( )

( )

( )

( )

( )
2

2

0 1

1

2
0 1 2

A 2

1

0 1

1

a a
4 = 

1+b

a a 3 2 -80 + 20ω
1 = H ω

1+ -16ω1+b 3 2

a a 4
0 = 

1+b 4

+




+ 
=




+ 




a0=-80,  a1=20, b1=-16

Inverse mapping does not exist because roots of odd multiplicity on real axis



Collocation
Example:
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1+b 9

a a 4 9 -27 243 ω
1 = H ω
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=
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• This solution is equal to 1 at all frequencies except ω=3 where it is undefined

• Thus there is no solution with these collocation points

( )
2

2 0 1
A 2

1

a a ω
H ω  = 

1+b ω

+

a0=1,  a1=-27/243, b1=-27/243



Collocation
Example:

In some situations, collocation causes a lot of ripple between the collocation points

x x x

x

1

ω

( )2

AH ω



Collocation Observations

Fitting an approximating function to a set of data or points 
(collocation points)
– Closed-form matrix solution for fitting to a rational fraction in ω2

– Can be useful when somewhat nonstandard approximations are 
required

– Quite sensitive to collocation points

– Although function is critically constrained, since collocation 
points are variables, highly under constrained as an optimization 
approach

– Although fit will be perfect at collocation points, significant 
deviation can occur close to collocation points

– Inverse mapping to TA(s) may not exist

– Solution may not exist at specified collocation points



Collocation 

What is the major contributor to the limitations observed 

with the collocation approach? 

• Totally dependent upon the value of the desired response at a small but 

finite set of points  (no consideration for anything else)

• Highly dependent upon value of approximating function at a single point or 

at a small number of points

• Highly dependent upon the collocation points



The Approximation Problem

1

1

ω

( )LPT j

• Magnitude Squared Approximating Functions

• Inverse Transform

• Collocation

• Least Squares (Cost Function Minimizations)

• Pade Approximations

• Other Analytical Optimization

• Numerical Optimization

• Canonical Approximations
→Butterworth (BW)

→Chebyschev (CC)

→Elliptic

→Bessel

→Thompson

Approach we will follow:

( )2

AH ω

( ) ( )2

A AH ω T s→



Cost Function Minimizations

To minimize the heavy dependence on a small number of points, will consider 

many points thus creating an over-constrained system
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ω
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AH ω
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x x
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x x
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C...

Ck-1
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H ω  = 

bω+





k > m+n+1

Approximating function can not be forced to go through all points

But, it can be “close” to all points in some sense



Cost Function Minimizations
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Define the error at point i by

( ) ( )i D i A iε  = H ω  - H ω

where HD(ωi) is the desired magnitude squared response at ωi and where 

HA(ωi) is the magnitude squared response of the approximating function



Cost Function Minimizations

x

x

ω

( )2

AH ω

x

x x

x

x

x x

c1 c2

ck

C...

C...

Ck-1

( )
1

m
2i

i
2 i=0

A n
2i

i

i=1

aω

H ω  = 

bω+





( ) ( )i D i A iε  = H ω  - H ω

Goal is to minimize some metrics associated with εi at a large number of points

N

1 i

i=1

C  = ε
N

2

2 i

i=1

C  = ε

N
2

3 i i

i=1

C  = w ε

wi a weighting function

Some possible cost functions

• Reduces emphasis on individual points

• Some much better than others from performance viewpoint

• Some much better than others from computation viewpoint

• Realization of no concern how approximation obtained, only of how good it is !

N
m

w:m i i

i=1

C  = w ε
1

1 2

1

1 2

N N
m m

w:m ,m i i i i

i=1 i=N +1

C  = w ε w ε+ 

Termed “Lm norm” if exponent is m and weight is 1



Least Squares Approximation

( )
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( ) ( )i D i A iε  = H ω  - H ω

Least Mean Square (LMS) based cost functions have minimums that can be 

analytically determined for some useful classes of approximating functions 

HA(ω2)

N
2

3 i i

i=1

C  = w ε

wi a weighting function

• Most of the other metrics listed on previous slide are not easy to get closed-

form expressions for minimums though computer optimization can be used: 

may be plagued by multiple local minimums but they may still be useful 

Consider:

• Often termed a L2 norm

• Minimizing L1 norm often provides better approximation but no closed-form 

analytical expressions

If exponent in cost function is 2, termed “least squares” cost function



Regression Analysis Review

( )
n

k

k

k=0

F x  = a x

Consider an nth order polynomial in x

Consider N samples of a function  ( )F x

( ) ( )ˆ
N

i
i=1

F x F x=

Define the summed square difference cost function as

( ) ( )( )
N 2

i i

i=0

C = F x F x−

where the sampling coordinate variables are
N

i i=1
X = x

A standard regression analysis can be used to minimize C with respect 

to {a0,a1, …an}

To do this, take the n+1 partials of C  wrt the ai variables



Regression Analysis Review

( ) ( )( )
N 2

i i

i=0

C = F x F x− ( )
n

k

k

k=0

F x  = a x
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…

Taking the partial of C wrt each coefficient and setting to 0, we obtain the set of equations

This is linear in the aks.
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-1A X F= •
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a

a

...

a

 
 
 
 
 
 

Solution is
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A few details about regression analysis:
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( ) ( )( )
N 2

i i

i=0

C = F x F x− ( )
n

k

k

k=0

F x  = a x

( )
2

N n
k

k i i

i=0 k=0

C = a x F x
 

− 
 

 

-1A X F= •

• Closed form solution

• Requires inversion of a (n+1) dimensional square matrix

• Not highly sensitive to any single measurement

• Widely used for fitting a set of data to a polynomial model

• Points need not be uniformly distributed

• Adding weights does not complicate solution

Observations about  Regression Analysis:

This analysis was restricted to a polynomial – will see how applicable 

it is to a rational fraction !



Stay Safe and Stay Healthy !



End of Lecture 7
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